Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries.

نویسندگان

  • Praveen Meduri
  • Chandrashekhar Pendyala
  • Vivekanand Kumar
  • Gamini U Sumanasekera
  • Mahendra K Sunkara
چکیده

In this report, we present a simple and generic concept involving metal nanoclusters supported on metal oxide nanowires as stable and high capacity anode materials for Li-ion batteries. Specifically, SnO(2) nanowires covered with Sn nanoclusters exhibited an exceptional capacity of >800 mAhg(-1) over hundred cycles with a low capacity fading of less than 1% per cycle. Post lithiation analyses after 100 cycles show little morphological degradation of the hybrid nanowires. The observed, enhanced stability with high capacity retention is explained with the following: (a) the spacing between Sn nanoclusters on SnO(2) nanowires allowed the volume expansion during Li alloying and dealloying; (b) high available surface area of Sn nanoclusters for Li alloying and dealloying; and (c) the presence of Sn nanoclusters on SnO(2) allowed reversible reaction between Sn and Li(2)O to produce both Sn and SnO phases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries

Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...

متن کامل

Fabrication and Characterization of SnO2/Graphene Composites as High Capacity Anodes for Li-Ion Batteries

Tin-oxide and graphene (TG) composites were fabricated using the Electrostatic Spray Deposition (ESD) technique, and tested as anode materials for Li-ion batteries. The electrochemical performance of the as-deposited TG composites were compared to heat-treated TG composites along with pure tin-oxide films. The heat-treated composites exhibited superior specific capacity and energy density than ...

متن کامل

Improved electrochemical performance of tin-sulfide anodes for sodium-ion batteries

Due to their highly reversible capacity, tin-sulfide-basedmaterials have gained attention as potential anodes for sodium-ion and lithium-ion batteries. Nevertheless, the performance of tin sulfide anodes is much lower than that of tin oxide anodes. The aim of the present investigation is to improve the electrochemical performances of SnS anodes for sodium-ion batteries using conventional organi...

متن کامل

High capacity Li ion battery anodes using ge nanowires.

Ge nanowire electrodes fabricated by using vapor-liquid-solid growth on metallic current collector substrates were found to have good performance during cycling with Li. An initial discharge capacity of 1141 mA.h/g was found to be stable over 20 cycles at the C/20 rate. High power rates were also observed up to 2C with Coulombic efficiency > 99%. Structural characterization revealed that the Ge...

متن کامل

MoO(3-x) nanowire arrays as stable and high-capacity anodes for lithium ion batteries.

In this study, vertical nanowire arrays of MoO(3-x) grown on metallic substrates with diameters of ~90 nm show high-capacity retention of ~630 mAhg(-1) for up to 20 cycles at 50 mAg(-1) current density. Particularly, they exhibit a capacity retention of ~500 mAhg(-1) in the voltage window of 0.7-0.1 V, much higher than the theoretical capacity of graphite. In addition, 10 nm Si-coated MoO(3-x) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2009